Learning to find good correspondences

K.M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua
Matching with keypoints

(a) Find putative matches
(b) Find inliers (e.g. RANSAC)

(c) Retrieve pose

Dense matching with CNNs

- Current focus of research:
 - Zamir et al, ECCV’16.
 - SfM-Net, arxiv’17.
 - DeMoN, CVPR’17.
 - Lowe et al, CVPR’17.

- Focus: video, small displacements.

- General case (wide baselines) remains unsolved.
Where's the challenge?
RANSAC: not always enough
Geometry to the rescue
Geometry to the rescue

A geometrically-aware deep network.
- **Input:** correspondences.
- **Output:** one weight for each.

We simultaneously learn to:
- Perform **outlier rejection**.
- Regress to the **essential matrix**.
Computing the Essential matrix

Closed form solution: 8-point algorithm

Learning to compute weights

We learn to compute \textbf{weights for the 8-point algorithm}
Learning to compute weights

We learn to compute **weights for the 8-point algorithm**

- **N correspondences**
- **Nx9 matrix**
- **9x9 matrix**
- **Essential Matrix**
- **Deep Net**
- **Fully differentiable!**

\[uu', uv', u, \ldots \]
Learning to compute weights

We learn to compute \textbf{weights for the 8-point algorithm.}
Adding a classification loss

We can build labels from epipolar geometry

Adding a classification loss

We can build labels from epipolar geometry

Complete formulation

- We jointly train for outlier rejection and regression to the Essential matrix by minimizing the hybrid loss:

\[
\mathcal{L}(\Phi) = \sum_{k=1}^{P} (\alpha \mathcal{L}_x(\Phi, x_k) + \beta \mathcal{L}_e(\Phi, x_k))
\]

- Classification (Inliers vs outliers)
- Regression (which inliers help us retrieve E?)

- For optimal performance, we first minimize the classification loss alone, and then the weighted sum of the two losses.
Unordered data

Our network

• **Input:** putative matches (SIFT+NN). Coordinates only: \(\{u, v, u', v'\}^{1 \leq i \leq N} \)
• **Output:** Weights, encoding inlier probability.
• **Network:** MLPs. Global context embedded via Context Normalization.
Embedding context

- Non-parametric normalization of the mean/std of feature maps.
- Applied over each image pair in the batch separately.
- Also known as Instance Norm, used in image stylization.

```
Image pair

Batch

Matches

Coords: \{u, v, u', v'\}_{1 \leq i \leq N}

CONTEXT NORM

Mean & Variance

Perception
```
Training data

We need **only** the camera poses!
Ablation test: hybrid loss

We build cumulative curves thresholding over the error in the estimated pose. Metric: \textbf{mAP}, up to a certain angle (5°, 10°, 20°).

The \textbf{classification} loss works, but the \textbf{hybrid loss} does best. Larger margin at smaller thresholds!
Ablation test: Context Norm

We build cumulative curves thresholding over the error in the estimated pose. Metric: **mAP**, up to a certain angle (5°, 10°, 20°).

[Graph showing mAP comparison across different error thresholds for Ours with/without CN and PointNet.]

Context Normalization outperforms global features (PointNet).
Results

Train on only **two sequences**: one indoors & one outdoors (10k pairs from each):

(i) St. Peter’s Square (2.5k images)
(ii) Brown (video, 8k images)

Test on **completely different** sequences (1k pairs from each):
Results

Outdoors: great performance. **Indoors:** slightly better than dense methods.
RANSAC for inference

• At test time, we **do not require differentiability**. We can apply RANSAC!

• Our pipeline:
 1. Forward matches through the network.
 2. Threshold weights to filter them (~15% inliers).
 3. Run RANSAC (~67% inliers).

• **17x times faster** than standalone RANSAC! And ~2x better.
Collaborators

Kwang Yi (U. Victoria)
Eduard Trulls (EPFL)
Yuki Ono (Sony)
Mathieu Salzmann (EPFL)
Vincent Lepetit (U. Bordeaux)
Pascal Fua (EPFL)

Code and models: github.com/vcg-uvic/learned-correspondence-release
Please visit the poster!